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Abstract—The text data present in overlaid bands convey brief
descriptions of news events in broadcast videos. The process of
text extraction becomes challenging as overlay text is presented
in widely varying formats and often with animation effects. We
note that existing edge density based methods are well suited
for our application on account of their simplicity and speed of
operation. However, these methods are sensitive to thresholds
and have high false positive rates. In this paper, we present
a contrast enhancement based preprocessing stage for overlay
text detection and a parameter free edge density based scheme
for efficient text band detection. The second contribution of this
paper is a novel approach for multiple text region tracking with
a formal identification of all possible detection failure cases. The
tracking stage enables us to establish the temporal presence of
text bands and their linking over time. The third contribution
is the adoption of Tesseract OCR for the specific task of overlay
text recognition using web news articles. The proposed approach
is tested and found superior on news videos acquired from three
Indian English television news channels along with benchmark
datasets.

I. INTRODUCTION

Overlay text bands in TV broadcast news videos provide
us with rich semantic information about news stories which
are otherwise hard to estimate by processing audio-visual
data. In Indian TV news broadcast, overlay text has widely
varying formats and occupies 20 − 40% of the total screen
area (during regular news presentations and increases while
presenting headlines etc.). Hence, overlay text is an important
feature in a number of sub-tasks of news video analysis viz.
news summarization, story segmentation, indexing and linking,
commercial detection etc.

A video text extraction pipeline generally involves text
detection and localization in each frame, text tracking over
the frames and recognizing the text using an OCR engine. In
TV news broadcast, text is overlaid in the form of different
text bands. Text bands contain single or multi-line sentences or
semantically linked set of words (e.g. name of person followed
by designation in next line). Different text bands have different
semantic meanings and are characterized by on screen position
and style of the text band. For example, text relevant to a story
is often overlaid in upper part of the screen in large font size
and with high contrast in colors. Thus, instead of identifying
discrete words, we propose to detect, track and recognize text
from overlay text bands. We define a text band as a region
bounded by a rectangle enclosing one or more adjoining text
regions (words) subject to following conditions. First, all the
text regions should have almost same stroke width. Second,
no sharp changes in background as well as foreground (text)

color of text regions. Third, all the text regions should have
common base line. Fourth, text regions should not have any
separator between them.

Overlay text detection schemes can be categorized as either
patch based or geometrical property based [1]. Patch based
techniques extract features from image patches and identify
text regions using pre-trained classifiers [2]. These patches are
grouped further to detect the text regions. These methods have
shown excellent performance on various challenging real life
problems but at the cost of rigorous pre-training. On the other
hand, geometrical property based methods make assumptions
on representative features of text regions like high edge/corner
density [3], [4], edge continuity [5], stroke consistency [1], [6],
and color consistency [7]. These methods are well known for
off the shelf deployment (as no pre-training is required) and
fast speed of operation.

The simplest of the geometrical property based approaches
rely on edge or corner densities. Edge/corner density based
methods assume high density of strong edges in text regions
and have been used extensively due to their simplicity and
speed [4]. However, these approaches require selection of
thresholds and suffers due to high edge density in non-text
regions resulting in false positives. Based on different proper-
ties of text regions, various curative measures were proposed
in literature in order to suppress strong edges from non-text
regions and hence, the false positives [8]. For example, Kim
et.al [9] have observed that text regions have peculiar color
transition pattern due to high contrast and hence, suggested
the use of color transition maps instead of edge images to
calculate the density.

We believe that for comparatively simple task of overlaid
text detection using patch based approaches [2] and some
of the complex methods like stroke width transform [1] will
overkill the resources. In this work we build up on basic edge
density based text detection and propose the following to im-
prove the video text extraction pipeline typically for TV news
broadcast videos. First, we propose to reduce false positives in
edge density based methods by selectively boosting overlaid
text edges using contrast enhancement based preprocessing
scheme. Moreover, we use derivatives of edge projection
profiles for threshold free detection of text bands. Second,
we propose a spatial relations based reasoning framework
for tracking multiple (detected) text bands, which is capable
of identifying and handling various problems arising out of
detection/tracking failures. Third, we propose to improve the
performance of Tesseract OCR engine by using synthetically
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generated training data and incorporating a dictionary of words
derived from web news articles. The rest of this paper is
organized as follows. The methodology for frame-wise text
band detection is presented in Section II. The proposed ap-
proach for multiple text region tracking in videos is presented
in Section III. Modifications in Tesseract OCR engine to
improve the recognition rate are described in Section IV. The
experimental results are discussed in Section V. Finally we
conclude in Section VI and sketch the future scope of work.

II. TEXT BAND DETECTION

Overlay text bands have usually clutter free background,
high contrast between foreground (text) and background and
doesn’t suffer from perspective distortions. Hence, compara-
tively faster and easy to deploy geometrical approaches are a
natural choice for overlaid text detection. We have adopted and
improved on a well established edge density based approach
[3] for detecting text bands instead of discrete words. The
basic edge based method detects and localizes text regions by
using horizontal and vertical projection profiles of gradient
magnitude (edge) image. Performance of the basic method
deteriorates due to high edge densities in non-text regions,
mis-alignment of different text bands and high sensitivity to
thresholds. We propose to reduce the false positives by a
preprocessing technique to selectively boost text edges while
suppressing non-text edges based on contrast of gradient
magnitude image. We use first and second derivatives of pro-
jection profiles to reduce the dependence on projection profile
thresholds. Our proposed preprocessing scheme is described
next.

A. Preprocessing Proposal

In edge density based text detection, the first step is to calcu-
late gradient magnitude/edge image followed by binarization
of gradient magnitude image to get an edge map. Threshold
for binarizing the gradient magnitude is selected such that,
edge map should have edges only from text regions. This
binarization threshold is a critical parameter for basic text
detection approaches [9], [4], [8]. However, gradient magni-
tudes from text and non-text regions have significant overlap
(Figure 1(d)) and hence, choosing a threshold to discriminate
text and non-text gradients is not trivial. In cases of such
overlaps, usually a lower threshold is chosen to eliminate
definitely non-text regions. Further, local text specific features
are used to eliminate strong edges from non-text regions [8].

Due to high contrast of text bands, gradient magnitudes
originating from text regions lie on comparatively higher side
of the edge magnitude histogram (Figure 1(d)). We propose to
increase the dynamic range of gradient magnitude histogram
to increase discrimination between text and non-text gradient
magnitudes. We achieve this in the following two steps.
First, by linearly stretching (linear contrast enhancement) the
gradient magnitude histogram and second, by equalizing the
stretched gradient histogram. We use isotropic Scharr operator
[8] to compute the gradient magnitude image over the Sobel
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Fig. 1. Figure (a) - (c) shows gradient magnitude image, gradient magnitude
image after linear contrast stretching and gradient Magnitude image after
histogram equalization, respectively. Figures (d)-(f) shows the gradient value
histograms and Cumulative Distribution Functions of images (a)-(c) . Overlay
text regions have comparatively strong gradients due to high contrast as
evident from (a) and (d). We selectively boost the stronger gradients so as
to have sufficient separation between text and non-text gradient values. This
boosting is achieved first by stretching of histogram (Figure (d)) followed by
histogram equalization (Figure (f)). Note the steep change in CDF of gradients
from text and non-text regions in histogram (f). Hence, after pre-processing
text regions (P (xtext < 150) = 0.45) can now be easily discriminated from
non-text regions (P (xnontext < 150)) = 0.95).

operator proposed in basic method [3]. We start with nor-
malizing the gradient magnitude image Im by the maximum
gradient magnitude value (gmax) to obtain the image Inm =
Im/gmax. Next, we eliminate edges from definitely non-text
regions having small gradient magnitudes by linearly stretch-
ing gradient magnitude histogram (Figure 1(e)). The gradient
magnitude image after linear stretching is, Imc(x, y) = β/λ
where, β = α(Inm(x, y)−0.5)+0.5 and λ = max(Imc) is the
normalizing constant. The factor α (α > 1) decides the extent
of suppression. The value of α should be selected so as to
nullify gradient magnitudes from “definitely non-text regions”.
The lowest non-suppressed gradient magnitude value is gns =
(α−1)gmax

2α where, gmax is the maximum gradient value. Thus,
the value of α is not independent of data and we select its
value using Otsu’s thresholding scheme. Otsu’s threshold gives
upper bound on values of gradient magnitudes originating
form definitely non-text regions. We select value of α such
that, gotsu = gns or α = (gmax)/(gmax − 2gotsu). The final
expression for stretched histogram image (Figure 1(b)) is given
by, Imc(x, y) = u(Imc(x,y)−gns)

λ [α(Inm(x, y)− 0.5) + 0.5]
where, u(·) is the unit step function.



Histogram equalization is done further on Imc to obtain the
edge map Ωce which we use further for text band detection.
The histogram equalized image (Figure 1(f)) now have well
distributed gradient magnitudes. Also, it is to be noted that
gradient magnitudes originating from text regions are concen-
trated towards higher side of the pixel value histogram, while
non-text magnitudes are concentrated towards lower side.
Hence, the preprocessing stage successfully suppresses false
positives originating due to strong non-text edges. Our next
proposal for threshold free overlaid text band detection using
derivatives of horizontal and projection profiles is described
next (Sub-section II-B).

B. Text Band Detection

The Basic method of text detection proposed in [3] assumes
high edge density in text regions. The basic method uses
horizontal and vertical projection profile of gradient magnitude
or edge image to locate high edge density text regions. Text
bands are aligned horizontally. Thus, horizontal projection
profile is processed first to obtain bands having sufficient edge
density. Horizontal projection profile Php of edge image Ω
of size w × h is given by, Php(y) =

∑w
x=1 Ω(x, y), where

y = 1, . . . h. Edge profile Php is thresholded by a threshold
ηhp to discard horizontal lines having insufficient edge density.
A region between yi and yj is marked horizontal band if
and only if Php(y) > ηhp∀y ∈ [yi, yj ]. Further, the vertical
projection profile, Pvp(x) =

∑yj
y=yi

Ω(x, y) is calculated in
every horizontal band bounded by yi and yj ; followed by
thresholding with a threshold ηvp. A region between xl and
xk in a particular horizontal band bounded by yi and yj is
called text region if and only if Pvp(x) > ηvp, ∀x ∈ [xl, xk].

Performance of the basic edge density based method is
curtailed due to its high dependency on projection profile
thresholds ηhp and ηvp. Moreover, words are detected as text
regions instead of text bands by the basic approach in [3],
which is not favorable for TV broadcast news.

We propose to detect all possible horizontal lines first
(arising due to text band boundaries) instead of horizontal
bands. Once all these horizontal lines are located, we assume
the region between each pair of consecutive lines as potential
horizontal band and locate text regions by examining its
vertical projection profile. Abrupt changes in the horizontal
projection profile signifies the presence of a horizontal line or
boundary. The first difference of the horizontal profile P

′

hp(y),
captures the abrupt changes in horizontal profile and has very
high differences at boundary locations, while zero or very
small differences elsewhere. Further, first difference of the
profile have local extremum at boundary locations. Second
difference P

′′

hp(y) of the horizontal projection profile locates
these local extrema in first difference of the profile P

′

hp(y)
and hence, the potential text band boundaries. Various steps
in text band detection are illustrated in Figure 2.

The differentiated profile P
′

hp (Figure 2(b)) have non-
zero values only at the locations where, discontinuities or
horizontal lines are present. For a single horizontal line in

image we will get multiple non-zero values in P
′

hp. An ε-
CCA (connected component analysis) is performed on P

′

hp

to group the prominent non-zero values (by assigning same
label to horizontal lines in a group) arising due to single
horizontal line. The result of CCA is stored in a label array
Hl where Ly are the number of distinct labels assigned by
CCA. This number of distinct labels is equal to the number
of potential horizontal lines. The grouped non-zero values are
shown marked in image 2(b). The second difference of the
projection profile P

′′

hp is thresholded by a local mean. The
local mean is computed using set of points have same label in
label array Hl. Identifying local minima in each region will
give us the location of the horizontal line He(ly) in respective
local region.

µ(l) =

∑H
i=1

(
|P ′′

hp(i)|δk(Hl(i)− l)
)

∑H
i=1 (δk(Hl(i)− l))

; l = 1, 2..Ly (1)

P
′′

hp(y) =

{
P

′′

hp(y) |P ′′

hp(y)| > µ (Hl(y))

0 Otherwise
; y = 1, 2, ..H (2)

He(ly) =
{
y|∀i

[
P

′′

hp(y) < P
′′

hp(i)
]
∧ [Hl(y) = ly]

}
(3)

Localized horizontal lines are shown in Figure 2(c). Region
between every consecutive pair of lines out of Ly horizontal
lines is considered to be a potential horizontal band. Vertical
projection profile P

ly
vp is calculated in every potential hori-

zontal band. Next, we use the ε − CCA (as done in case of
horizontal profile) on first difference P

′ly
vp (x) of the vertical

profile to locate the vertical band boundaries in each of the
horizontal band. The Label array V lyl stores the result of CCA.
The bounding boxes containing the text band are thus obtained
from P

′ly
vp and He(ly).

The proposed approaches for image pre-processing (sub-
section II-A) and text band detection have shown sufficient
reduction of false positives in text band detection for indi-
vidual frames (Table-III). We next introduce the framework
for tracking (Section III) the text bands detected in individual
frames.

III. MULTIPLE TEXT BAND TRACKING

Tracking aims at associating the detection results across
frames to establish a time history of the image plane trajectory
of objects. This reduces the cost of detection and recognition
in every video frame. Moreover, false detections arising out of
local artifacts in some frames which do not persist for more
than a few frames can be filtered out from trajectory analysis.
The multiple text region tracking is performed over two sets
– first, the set tR(τ − 1) = {tRi(τ − 1); i = 1, . . .mτ−1}
consisting of the text bounding rectangles tRi(τ − 1) from
the previous instant τ − 1; and second, the set dR(τ) =
{dRi(τ); j = 1, . . . nτ} containing the bounding rectangles
dRj(τ) of the text regions detected in the present frame Iτ .

The association between the text regions from two consec-
utive frames is measured by their overlap. For example, if
tRi(τ − 1) and dRj(τ) has significant overlap, then we can
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Fig. 2. Illustrating steps for text band localization. (a) is the modified gradient magnitude map. Text band boundaries are localized by using first (Fig.(c))
and second(Fig.(d)) differences of the horizontal projection profile (Fig. (b)). The red and black lines in (c) indicates the positive and negative differences
respectively. The horizontal boundaries of text bands are located by finding the local extremum using second difference of projection profile. The vertical
boundaries of text band are located by calculating the vertical projection profile of every located horizontal text band (Fig.(e)) (red lines represent magnitude
of vertical profile). Localized text bands are shown in Fig.(f)

conclude that both of them indicate the same text region and
hence, the former can be updated by the later. However, errors
in text detection do persist, either due to algorithm failure or
on account of image quality. In many cases, either text bands
appear fragmented after detection or the detection itself fails.
This calls for an in-depth and formal analysis for identifying
all such problem situations that the process of tracking may
encounter. The associations between the elements of tR(τ−1)
and dR(τ) are resolved in two steps. First, we construct the
set tS

(d)
i (τ) = {dRk(τ) : [tRi(τ − 1) ∪ dRk(τ) 6= Φ]}

of detected regions overlapped with each of the previously
tracked region tR(τ − 1) and similarly, the set dS

(t)
j (τ) =

{tRl(τ) : [tRl(τ − 1) ∪ dRj(τ) 6= Φ]} of previously tracked
regions overlapped with each of the presently detected region
dR(τ). Next, we categorize the nature of these overlaps using
the RCC − 5 spatial relations.

The ith text region tRi(t) at the tth instant is represented by
its bounding rectangle bRi(t) and its color histogram cHi(t).
Thus, in ideal situations, a corresponding (detected) text region
in the tth frame can be identified by checking the maximum
overlap of bRi(t − 1) and color match with cHi(t − 1).
However, problem cases like – failure of text detection in
the tth frame thereby losing correspondence; appearance of
new text bands which have no association with previously
tracked text bands; disappearance of existing text regions, call
for the inclusion of reasoning through association analysis.
The process of reasoning involves the estimation of qualitative
spatial relations between text regions in SA(t−1) and SD(t).
In this context, we explore the RCC − 5 spatial relations and
are described next.

A. The RCC-5 Relations

Qualitative spatial relations are a common way to represent
knowledge about configurations of interacting objects thereby
reducing the burden of quantitative expressions of such relative
arrangements. Besides, composition of existing relations allow
the possibility of deducing newer relations among objects.
There exists a vast literature on the spatial relations of over-
lapping objects, among which the RCC−5 region connection
relations are most widely used. These relations consist of DC,
EQ, PO, PP and PPi. In the context of the estimation of
these relations, we define the fractional overlap measure γfo

TABLE I
DETECTING THE RCC − 5 RELATIONS USING THE THRESHOLDED

FRACTIONAL OVERLAP MEASURES.

γfo(A,B) ↓
/
γfo(B,A)→ ≤ ηfo ∈ (ηfo, 1− ηfo) ≥ (1− ηfo)

≤ ηfo DC(ηfo) PO(ηfo) PPi(ηfo)
∈ (ηfo, 1− ηfo) PO(ηfo) PO(ηfo) PPi(ηfo)
≥ 1− ηfo PP (ηfo) PP (ηfo) EQ(ηfo)

between two regions A and B as γfo(A,B) = |A ∩B|/|A|.
The predicates for detecting the object-blob RCC−5 relations
by using the fractional overlap measure and with respect to
a tolerance ηfo are shown in table I. We next describe the
procedure for identifying the different cases in the context of
multiple text region tracking.

Unique Correspondence – A text region tRi(t − 1) is
considered to have an unique correspondence with a detected
text region dRj(t), if |tS(d)

i(τ)| = 1 and |dS(t)
j(τ)| = 1.

In this case, tRi(t − 1) ∈ SA(t − 1) is updated with the
bounding rectangle and color histogram of dRj(t) to form
tRi(t) ∈ SA(t). The update rule for updating the bounding
box and color histogram is determined by RCC-5 Relation
between two regions. Four possible relations are shown in the
first row of table II. The fluctuations in localizing the band
boundary in detection stage are handled by these conditions.

Multiple Correspondences can have three different types
– First, multiple tracked text regions tRi(t − 1) can
uniquely overlap with a single detected text band dRj(t)
i.e.(|tS(d)

i(τ)| = 1) and (|dS(t)
j(τ)| > 1), ∀itRi(t −

1) ∪ dRj(t) 6= Φ. Second, multiple detected text regions
dRj(t) can uniquely overlap with a single tracked band
tRi(t − 1), i.e. (|tS(d)

i(τ)| > 1) and (|dS(t)
j(τ)| = 1)

,∀jtRi(t − 1) ∪ dRj(t) 6= Φ. Third, multiple tracked text
regions tRi(t − 1) can overlap with multiple detected text
regions, i.e. (|tS(d)

i(τ)| > 1) and (|dS(t)
j(τ)| > 1),

∀i, jtRi(t− 1) ∪ dRj(t) 6= Φ.
The possible cases are listed in table II. First case arises

due to multiple track initializations on same text band. The
possibility of merging is checked and the bounding boxes are
updated accordingly. Second case occurs when a tracker was
initialized on group of text regions due to detection failures.
The tracked band is checked for splitting according to newly
detected regions. In the third case, there is a possibility for
both splitting as well as merging and both are checked.

Disappearance – A text band tRi(t − 1) is considered



TABLE II
POSSIBLE CASES OF ASSOCIATION BETWEEN THE TRACKED AND

DETECTED RECTANGLES OF TEXT REGIONS

|t
S

(
d
)
i
(τ

)|

|d
S

(
t
)
j
(τ

)|

tRi(τ − 1)
{EQ}
dRj(τ)

tRi(τ − 1)
{PP}
dRj(τ)

tRi(τ − 1)
{PPi}
dRj(τ)

tRi(τ − 1)
{PO}
dRj(τ)

1 1

1 1+

1+ 1

1+ 1+

to disappear in the next frame if it does not have any
correspondence with any detected text band in SD(t), i.e.
∀jbRi(t − 1) DC(ηfo) dRj(t) or (|tS(d)

i(τ)| = 1). This
may be due to actual termination of the display of that text or
detection failure due to local artifacts in present frame.

In this case, we first focus on the bounding rectangle box
bRi(t − 1) of tRi(t − 1) in the current frame. If the color
histogram obtained from bRi(t − 1) in the current frame
matches with that of cHi(t− 1) then, we call it a temporary
detection failure and restore the track of tRi(t−1). Otherwise,
we consider this as the termination of display of the tracked
text and do not include it further in SA(t).

New Entry – The detected text region dRj(t) is considered
to be a new entry if it does not have any correspondence with
the text bands in SA(t− 1), i.e. ∀ibRi(t− 1) DC dRj(t) or
(|dS(t)

j(τ)| = 0). In this case, we form a new text region
with the bounding rectangle and color histogram of dRj(t)
and include it in SA(t).

The system initializes with SA(0) = Φ. The first set of
detections are inducted in the set SA and the tracking process
continues with addition, update and removal of text bands
by association analysis of tracked and detected text bounding
rectangles. Each tracked text region have the background and
foreground information. This color information is further used
to binarize the text bands. These binarized text bands are then
accumulated over the entire track before passing to the OCR
engine so as to save multiple passes of OCR. Next, we describe
the modifications made on Tesseract OCR to improve the text
recognition.

IV. ADAPTING TESSERACT FOR OVERLAID TEXT
RECOGNITION

Tesseract [10] OCR engine was primarily developed for
optical character recognition on scanned documents at HP labs
during 1984 and 1994. In late 2005, HP released Tesseract
for open source. Tesseract provides basic OCR engine with
tools for training. We have used Tesseract OCR on aggregated
binarized images of consistently tracked bands to recognize the
text content. OCR engine uses adaptive character segmenta-
tion based on linguistic model and character classifier. Font
dependent polygonal approximation of the character outline
is used as a feature for the character classifier. Therefore,

linguistic model and the fonts used for training the char-
acter classifier plays crucial role in overall performance of
Tesseract. Tesseract OCR engine is by default trained for
scanned documents and uses standard English language model.
Whereas, overlaid text often contains proper nouns and hash
tags presented in variety of fonts. Hence, Tesseract with default
models performs poorly on overlaid text recognition. To adapt
the OCR engine for the task of overlaid text recognition it is
necessary to train the character classifier with overlaid text
samples and update the language model to include proper
nouns and hash tags.

First, for training character classifiers sufficient ground truth
data is required. Marking character level ground truth data
for text recognition is a very tedious job. In literature, it is
argued that polygonal approximation feature used in Tesseract
is only font dependent. Hence, instead of marking the character
level ground truth data, we have identified the commonly used
overlaid text fonts (we have used 34 fonts) across channels
and synthetically generated the data for training the Tesseract.
Second, in order to enrich the linguistic model used during
recognition, we have used the news articles available on
various news websites. News articles are rich sources of proper
nouns, hash tags (present in meta data) and abbreviations. We
have used a corpus of approximately 13, 00, 000 web articles
along with meta data provided on websites (like hash tags,
tweets) from three different sources viz. NDTV, Times of
India and First Post published during January, 2011 to April,
2015. Tesseract requires a dictionary of words, list of bi-grams,
list of frequently occurring words, list of numbers and list
of punctuations, as directed acyclic word graphs to build the
linguistic model. From the corpus of web articles, all required
directed acyclic word graphs are generated. In the next section,
we present the results of experimentation.

V. RESULTS

We have evaluated the performance of each sub-system
separately. We have tested our preprocessing (CE) scheme with
stroke width transform [1] (SWT) and projection profile based
method ([3])(PP), on 3 different image datasets of two different
types viz. natural scenes and born-digital images. Though the
preprocessing method is primarily developed for overlaid text,
the assumption of high contrast of text regions holds at large
for natural scene text as well. Hence, we have experimented
on natural scene images as well as born digital images. The
natural scene images are from ICDAR 2003 (509 images,
test and training set) and ICDAR 2013 (452 images, test and
training set) and Born-digital images are from ICDAR 2011
(420 images). The performance of text detection/localization
with and without preprocessing is compared using precision,
recall and f-measure, calculated by Ephstein’s Criterion [1].
SWT works on binary image and hence, histogram equalized
gradient magnitude image is thresholded and non-maximal
suppression is used to obtain the binary image. Both the
text detection algorithms have shown improvement in the
performance with the proposed preprocessing method (Table-
III).



TABLE III
PERFORMANCE ANALYSIS OF PRE-PROCESSING AND TEXT BAND

DETECTION

Datasets Method Epshtein’s Criterion Time
P R F (Sec)

SWT 0.5122 0.6086 0.5563 0.97
CE+SWT 0.5142 0.7106 0.5967 1.01

PP 0.2958 0.2765 0.2856 0.063
IC

DAR
20

13

CE+PP 0.3314 0.4026 0.3636 0.081
SWT 0.3829 0.4296 0.4049 0.217

CE+SWT 0.3995 0.4394 0.4185 0.225
PP 0.2935 0.4954 0.3689 0.043

IC
DAR

20
11

CE+PP 0.382 0.4864 0.4282 0.054
SWT 0.579 0.6299 0.6034 0.829

CE+SWT 0.611 0.7053 0.6548 0.87
PP 0.5012 0.4853 0.4931 0.059

IC
DAR

20
03

CE+PP 0.5868 0.6605 0.6215 0.063
Our Dataset SWT 0.6502 0.6894 0.6692 0.85
Text Band CE+SWT 0.7292 0.7826 0.755 0.907
Detection PP-TB 0.5327 0.6108 0.5691 0.061

CE+PP-TB 0.76 0.8544 0.8045 0.084

The performance of text band localization is evaluated on
our own dataset having 150 (720 × 576) images containing
challenging detection cases in news videos. For our dataset,
the ground truth is marked for band detection instead of word
detection. On our dataset of news video images, projection
profile based text band detection (PP-TB) outperforms the
other methods (Table III).

The drop in recall of SWT is due to the poor quality of
the video frames. More so, the proposed method is a lot
faster than SWT and other reported methods. While evaluating
the performance of SWT on our dataset to compensate for
difference in ground truth, we relax the matching criterion to
favor SWT. Our implementation of SWT took an average time
of 0.85 seconds for an image size of 720×576 (reported time
is 0.90 sec for 640× 480 image) while our approach took an
average time of 84 msecs only.

The performance of tracking is evaluated by using the purity
of the track as well as track switches. A track is called
pure when it has single properly tracked text band. While
track switch occurs when multiple tracks are generated on
a single ground truth track. We have evaluated the tracking
performance on 3 videos of 1 hour each from 3 different
Indian news channels. In all, we obtained 1, 05, 630 tracks out
of which 73, 053 tracks were found to be pure with 10, 457
track switches. However remaining 22, 120 tracks were either
initialized wrongly or tracked incorrectly.

We have evaluated the performance of OCR engine on three
hours of video data from three different channels. The word
level and character level error rates are presented in table IV.
It is evident from the table that adapting Tesseract using web
articles has improved performance of the OCR significantly.

VI. CONCLUSION

We have proposed a methodology for overlay text extraction
in TV broadcast news videos. In the context of text detection
and localization, we have significantly improved over existing
edge density based methods. We observed that this basic
approach had high false positives on account of strong edges
present in non-text regions. We have proposed a threshold free
preprocessing scheme for suppression of non-text edges while
boosting text edges. The effects of stronger edges coming
from non-text regions are nullified further by using the first

and second order derivatives of the edge density projection
profiles while localizing the text bands. The detected text
regions are tracked across the frames to extract the static and
consistent text bands using a formal reasoning framework.
The use of RCC-5 based reasoning framework allowed us
to identify different problem cases in detection and tracking.
Finally, text is extracted from consistently tracked text bands
using Tesseract OCR engine trained using web news articles.
All our proposals have shown significant improvement in the
performance of each subsystem. This work was a first stepTABLE IV
TABLE SHOWS THE CHARACTER AND WORD LEVEL ACCURACIES OF THE

OCR ENGINE. THE WORD LEVEL PERFORMANCE IS REPORTED AFTER
APPLYING DICTIONARY CORRECTIONS. SMALLER ERRORS ARE BETTER

Character Level Word Level
Errors %Error Errors %Error

Tesseract-Default 67167 20.97 60805 56.94
Tesseract-Modified 16016 4.99 7527 7.04

towards the larger goal of broadcast (news) video analytics.
The textual data acts as an important source of information
for obtaining meaningful tags for displayed events, persons
(faces), places and time. Thus, the extracted text data can
be used further as features for applications like video event
classification, news summarization, news story segmentation
and association of names to places and persons.
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